Discussion of “ Least Angle Regression ” by Efron
نویسنده
چکیده
Algorithms for simultaneous shrinkage and selection in regression and classification provide attractive solutions to knotty old statistical challenges. Nevertheless, as far as we can tell, Tibshirani’s Lasso algorithm has had little impact on statistical practice. Two particular reasons for this may be the relative inefficiency of the original Lasso algorithm and the relative complexity of more recent Lasso algorithms [e.g., Osborne, Presnell and Turlach (2000)]. Efron, Hastie, Johnstone and Tibshirani have provided an efficient, simple algorithm for the Lasso as well as algorithms for stagewise regression and the new least angle regression. As such this paper is an important contribution to statistical computing.
منابع مشابه
Discussion of Least Angle Regression
Algorithms for simultaneous shrinkage and selection in regression and classification provide attractive solutions to knotty old statistical challenges. Nevertheless, as far as we can tell, Tibshirani’s Lasso algorithm has had little impact on statistical practice. Two particular reasons for this may be the relative inefficiency of the original Lasso algorithm, and the relative complexity of mor...
متن کاملDiscussion of “ Least Angle Regression ” by Efron
Most of this article concerns the uses of LARS and the two related methods in the age-old, " somewhat notorious, " problem of " [a]utomatic model-building algorithms.. . " for linear regression. In the following, I will confine my comments to this notorious problem and to the use of LARS and its relatives to solve it. 1. The implicit assumption. Suppose the response is y, and we collect the m p...
متن کاملDiscussion of “ Least Angle Regression ” by Efron
I have enjoyed reading the work of each of these authors over the years, so it is a real pleasure to have this opportunity to contribute to the discussion of this collaboration. The geometry of LARS furnishes an elegant bridge between the Lasso and Stagewise regression, methods that I would not have suspected to be so related. Toward my own interests, LARS offers a rather different way to const...
متن کاملForward stagewise regression and the monotone lasso
Abstract: We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing tha...
متن کاملAn ordinary differential equation based solution path algorithm.
Efron, Hastie, Johnstone and Tibshirani (2004) proposed Least Angle Regression (LAR), a solution path algorithm for the least squares regression. They pointed out that a slight modification of the LAR gives the LASSO (Tibshirani, 1996) solution path. However it is largely unknown how to extend this solution path algorithm to models beyond the least squares regression. In this work, we propose a...
متن کامل